Maximum decay rate for the nonlinear Schr�dinger equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vortex nucleation in a dissipative variant of the nonlinear Schrdinger equation under rotation

In the present work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of ...

متن کامل

Nearly a polynomial decay rate for the dissipative wave equation

The study of stabilization of the linear dissipative wave equation in a bounded domain with Dirichlet boundary condition is now an old problem. The exponential decay rate of the energy was established by Bardos, Lebeau and Rauch [ BLR] under a geometrical hypothesis linked with the geodesics. Furthermore such condition called geometric control condition is almost necessary to get a uniform expo...

متن کامل

Polynomial decay rate for the dissipative wave equation

This paper is devoted to study the stabilization of the linear wave equation in a bounded domain damped in a subdomain when the geometrical control condition (see [ BLR]) of the work of C. Bardos, G. Lebeau and J. Rauch is not fulfilled. In such case, they [ BLR] proved that the uniform exponential decay rate of the energy cannot be hoped due to the existence of a trapped ray that never reaches...

متن کامل

Decay of Mass for Nonlinear Equation with Fractional Laplacian

where the pseudo-differential operator Λ = (−∆)α/2 with 0 < α ≤ 2 is defined by the Fourier transformation: Λ̂αu(ξ) = |ξ|αû(ξ). Moreover, we assume that λ ∈ {−1, 1} and p > 1. Nonlinear evolution problems involving fractional Laplacian describing the anomalous diffusion (or α-stable Lévy diffusion) have been extensively studied in the mathematical and physical literature (see [2, 11, 5] for refe...

متن کامل

Decay and Growth for a Nonlinear Parabolic Difference Equation

We prove a difference equation analogue of the decay-of-mass result for the nonlinear parabolic equation ut = ∆u+ μ|∇u| when μ < 0, and a new growth result when μ > 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA

سال: 2004

ISSN: 1021-9722,1420-9004

DOI: 10.1007/s00030-004-2003-7